8 research outputs found

    Chain Shape Matching for Simulating Complex Hairstyles

    Get PDF
    Animations of hair dynamics greatly enrich the visual attractiveness of human characters. Traditional simulation techniques handle hair as clumps or continuum for efficiency; however, the visual quality is limited because they cannot represent the fine-scale motion of individual hair strands. Although a recent mass-spring approach tackled the problem of simulating the dynamics of every strand of hair, it required a complicated setting of springs and suffered from high computational cost. In this paper, we base the animation of hair on such a fine-scale on Lattice Shape Matching (LSM), which has been successfully used for simulating deformable objects. Our method regards each strand of hair as a chain of particles, and computes geometrically derived forces for the chain based on shape matching. Each chain of particles is simulated as an individual strand of hair. Our method can easily handle complex hairstyles such as curly or afro styles in a numerically stable way. While our method is not physically based, our GPU-based simulator achieves visually plausible animations consisting of several tens of thousands of hair strands at interactive rates

    A Kinematic Approach for Efficient and Robust Simulation of the Cardiac Beating Motion

    Get PDF
    Computer simulation techniques for cardiac beating motions potentially have many applications and a broad audience. However, most existing methods require enormous computational costs and often show unstable behavior for extreme parameter sets, which interrupts smooth simulation study and make it difficult to apply them to interactive applications. To address this issue, we present an efficient and robust framework for simulating the cardiac beating motion. The global cardiac motion is generated by the accumulation of local myocardial fiber contractions. We compute such local-to-global deformations using a kinematic approach; we divide a heart mesh model into overlapping local regions, contract them independently according to fiber orientation, and compute a global shape that satisfies contracted shapes of all local regions as much as possible. A comparison between our method and a physics-based method showed that our method can generate motion very close to that of a physics-based simulation. Our kinematic method has high controllability; the simulated ventricle-wall-contraction speed can be easily adjusted to that of a real heart by controlling local contraction timing. We demonstrate that our method achieves a highly realistic beating motion of a whole heart in real time on a consumer-level computer. Our method provides an important step to bridge a gap between cardiac simulations and interactive applications
    corecore